Explaining the Host-Finding Behavior of Blood-Sucking Insects: Computerized Simulation of the Effects of Habitat Geometry on Tsetse Fly Movement
نویسندگان
چکیده
BACKGROUND Male and female tsetse flies feed exclusively on vertebrate blood. While doing so they can transmit the diseases of sleeping sickness in humans and nagana in domestic stock. Knowledge of the host-orientated behavior of tsetse is important in designing bait methods of sampling and controlling the flies, and in understanding the epidemiology of the diseases. For this we must explain several puzzling distinctions in the behavior of the different sexes and species of tsetse. For example, why is it that the species occupying savannahs, unlike those of riverine habitats, appear strongly responsive to odor, rely mainly on large hosts, are repelled by humans, and are often shy of alighting on baits? METHODOLOGY/PRINCIPAL FINDINGS A deterministic model that simulated fly mobility and host-finding success suggested that the behavioral distinctions between riverine, savannah and forest tsetse are due largely to habitat size and shape, and the extent to which dense bushes limit occupiable space within the habitats. These factors seemed effective primarily because they affect the daily displacement of tsetse, reducing it by up to ∼70%. Sex differences in behavior are explicable by females being larger and more mobile than males. CONCLUSION/SIGNIFICANCE Habitat geometry and fly size provide a framework that can unify much of the behavior of all sexes and species of tsetse everywhere. The general expectation is that relatively immobile insects in restricted habitats tend to be less responsive to host odors and more catholic in their diet. This has profound implications for the optimization of bait technology for tsetse, mosquitoes, black flies and tabanids, and for the epidemiology of the diseases they transmit.
منابع مشابه
Why do insects bite? A review of blood sucking behaviour.
Introduction There is considerable variation in the extent of the association between a blood sucking insect and its host. Blood sucking Diptera such as mosquitoes are temporary ectoparasites, only visiting the host for long enough to obtain a blood meal. Temporary ectoparasites such as tsetse flies, tabanids and mosquitoes tend to take relatively large blood meals, thus limiting the danger fro...
متن کاملExtreme adaptations for aquatic ectoparasitism in a Jurassic fly larva
The reconstruction of ancient insect ectoparasitism is challenging, mostly because of the extreme scarcity of fossils with obvious ectoparasitic features such as sucking-piercing mouthparts and specialized attachment organs. Here we describe a bizarre fly larva (Diptera), Qiyia jurassica gen. et sp. nov., from the Jurassic of China, that represents a stem group of the tabanomorph family Atheric...
متن کاملTsetse fly saliva: Could it be useful in fly infection when feeding in chronically aparasitemic mammalian hosts
Sleeping sickness and nagana are two important diseases cuased by African trypanosomes in humans and animals respectively, in tropical african countries. A number of trypanosome species are implicated in these diseases, but it is the Trypanosoma brucei group that is responsible for the chronic form of sleeping sickness. During the course of this chronic infection the parasite shows a clear trop...
متن کاملSurface Sialic Acids Taken from the Host Allow Trypanosome Survival in Tsetse Fly Vectors
The African trypanosome Trypanosoma brucei, which causes sleeping sickness in humans and Nagana disease in livestock, is spread via blood-sucking Tsetse flies. In the fly's intestine, the trypanosomes survive digestive and trypanocidal environments, proliferate, and translocate into the salivary gland, where they become infectious to the next mammalian host. Here, we show that for successful su...
متن کاملTsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response.
Tsetse flies (Glossina sp.) are the vectors that transmit African trypanosomes, protozoan parasites that cause human sleeping sickness and veterinary infections in the African continent. These blood-feeding dipteran insects deposit saliva at the feeding site that enables the blood-feeding process. Here we demonstrate that tsetse fly saliva also accelerates the onset of a Trypanosoma brucei infe...
متن کامل